ALGEBRAIC CONSTRUCTION OF THE STOKES SHEAF FOR IRREGULAR LINEAR q-DIFFERENCE EQUATIONS by Jacques Sauloy
نویسنده
چکیده
— The local analytic classification of irregular linear q-difference equations has recently been obtained by J.-P. Ramis, J. Sauloy and C. Zhang. Their description involves a q-analog of the Stokes sheaf and theorems of Malgrange-Sibuya type and is based on a discrete summation process due to C. Zhang. We show here another road to some of these results by algebraic means and we describe the q-Gevrey devissage of the q-Stokes sheaf by holomorphic vector bundles over an elliptic curve. Résumé (Construction algébrique du faisceau de Stokes pour les équations aux q-différences linéaires irrégulières) La classification analytique locale des équations aux q-différences linéaires irrégulières a été récemment réalisée par J.-P. Ramis, J. Sauloy et C. Zhang. Leur description fait intervenir un q-analogue du faisceau de Stokes et des théorèmes de type Malgrange-Sibuya et elle s’appuie sur la sommation discrète de C. Zhang. Nous montrons ici comment retrouver une partie de ces résultats par voie algébrique et nous décrivons le dévissage q-Gevrey du q-faisceau de Stokes par des fibrés vectoriels holomorphes sur une courbe elliptique. Je laisse aux nombreux avenirs (non à tous) mon jardin aux sentiers qui bifurquent (Jorge Luis Borges, Fictions).
منابع مشابه
ISOMONODROMY FOR COMPLEX LINEAR q-DIFFERENCE EQUATIONS
— The words “monodromy” and “isomonodromy” are used in the theory of difference and q-difference equations by Baranovsky-Ginzburg, Jimbo-Sakai, Borodin, Krichever,... although it is not clear that phenomena of branching during analytic continuation are involved there. In order to clarify what is at stake, we survey results obtained during the last few years, mostly by J.-P. Ramis, J. Sauloy and...
متن کاملGalois theory of fuchsian q-difference equations
We propose an analytical approach to the Galois theory of singular regular linear q-difference systems. We use Tannaka duality along with Birkhoff’s classification scheme with the connection matrix to define and describe their Galois groups. Then we describe fundamental subgroups that give rise to a Riemann-Hilbert correspondence and to a density theorem of Schlesinger’s type.
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملLinear Meromorphic Differential Equations: a Modern Point of View
A large part of the modern theory of differential equations in the complex domain is concerned with regular singularities and holonomic systems. However the theory of differential equations with irregular singularities has a long history and has become very active in recent years. Substantial links of this theory to the theory of algebraic groups, commutative algebra, resurgent functions, and G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008